Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
iScience ; 25(12): 105482, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404925

RESUMO

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing in vitro real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.

3.
Nat Struct Mol Biol ; 29(3): 190-193, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35273390

RESUMO

Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy.


Assuntos
Adesinas Bacterianas , Fímbrias Bacterianas , Adesinas Bacterianas/genética , Cristalografia por Raios X , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Proteínas Ligadas por GPI , Humanos , Manose/análise , Uromodulina/análise , Uromodulina/química , Uromodulina/metabolismo
4.
Front Mol Biosci ; 8: 771447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988116

RESUMO

Mass spectrometry-based high-sensitivity mapping of terminal glycotopes relies on diagnostic MS2 and/or MS3 ions that can differentiate linkage and define the location of substituents including sulfates. Unambiguous identification of adult zebrafish glycotopes is particularly challenging due to the presence of extra ß4-galactosylation on the basic building block of Galß1-4GlcNAc that can be fucosylated and variably sialylated by N-acetyl, N-glycolyl, or deaminated neuraminic acids. Building on previous groundwork that have identified various organ-specific N- and O-glycans of adult zebrafish, we show here that all the major glycotopes of interest can be readily mapped by direct nano-LC-MS/MS analysis of permethylated glycans. Homing in on the brain-, intestine-, and ovary-derived samples, organ-specific glycomic reference maps based on overlaid extracted ion chromatograms of resolved glycan species, and composite charts of summed intensities of diagnostic MS2 ions representing the distribution and relative abundance of each of the glycotopes and sialic acid variants were established. Moreover, switching to negative mode analysis of sample fractions enriched in negatively charged glycans, we show, for the first time, that a full range of sulfated glycotopes is expressed in adult zebrafish. In particular, 3-O-sulfation of terminal Gal was commonly found, whereas terminal sulfated HexNAc as in GalNAcß1-4GlcNAc (LacdiNAc), and 3-O-sulfated hexuronic acid as in HNK-1 epitope (SO3-3GlcAß1-3Galß1-4GlcNAc) were identified only in the brain and not in the intestine or ovaries analyzed in parallel. Other characteristic structural features of sulfated O- and N-glycans along with their diagnostic ions detected in this discovery mode sulfoglycomic work collectively expand our adult zebrafish glycome atlas, which can now allow for a more complete navigation and probing of the underlying sulfotransferases and glycosyltransferases, in search of the functional relevance of zebrafish-specific glycotopes. Of particular importance is the knowledge of glycomic features distinct from those of humans when using adult zebrafish as an alternative vertebrate model, rather than mouse, for brain-related glyco-neurobiology studies.

5.
Talanta ; 219: 121174, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887096

RESUMO

Rapid, selective and sensitive sensing of bacteria remains challenging. We report on a highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS)-based sensing approach for the detection of uropathogenic Escherichia coli (E. coli) bacteria in urine. The assay is based on the specific capture of the bacteria followed by interaction with cetyltrimethylammonium bromide (CTAB)-stabilised gold nanorods (Au NRS) as SERS markers. High sensitivity up to 10 CFU mL-1 is achieved by optimizing the capture interface based on hydrogenated amorphous silicon a-Si:H thin films. The integration of CH3O-PEG750 onto a-Si:H gives the sensing interface an efficient anti-fouling character, while covalent linkage of antibodies directed against the major type-1 fimbrial pilin FimA of the human pathogen E. coli results in the specific trapping of fimbriated E. coli onto the SERS substrate and their spectral fingerprint identification.


Assuntos
Nanopartículas Metálicas , Escherichia coli Uropatogênica , Anticorpos , Cetrimônio , Ouro , Humanos , Análise Espectral Raman
6.
mBio ; 11(4)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817102

RESUMO

The crust is the outermost spore layer of most Bacillus strains devoid of an exosporium. This outermost layer, composed of both proteins and carbohydrates, plays a major role in the adhesion and spreading of spores into the environment. Recent studies have identified several crust proteins and have provided insights about their organization at the spore surface. However, although carbohydrates are known to participate in adhesion, little is known about their composition, structure, and localization. In this study, we showed that the spore surface of Bacillus subtilis is covered with legionaminic acid (Leg), a nine-carbon backbone nonulosonic acid known to decorate the flagellin of the human pathogens Helicobacter pylori and Campylobacter jejuni We demonstrated that the spsC, spsD, spsE, spsG, and spsM genes of Bacillus subtilis are required for Leg biosynthesis during sporulation, while the spsF gene is required for Leg transfer from the mother cell to the surface of the forespore. We also characterized the activity of SpsM and highlighted an original Leg biosynthesis pathway in B. subtilis Finally, we demonstrated that Leg is required for the assembly of the crust around the spores, and we showed that in the absence of Leg, spores were more adherent to stainless steel probably because of their reduced hydrophilicity and charge.IMPORTANCEBacillus species are a major economic and food safety concern of the food industry because of their food spoilage-causing capability and persistence. Their persistence is mainly due to their ability to form highly resistant spores adhering to the surfaces of industrial equipment. Spores of the Bacillus subtilis group are surrounded by the crust, a superficial layer which plays a key role in their adhesion properties. However, knowledge of the composition and structure of this layer remains incomplete. Here, for the first time, we identified a nonulosonic acid (Leg) at the surfaces of bacterial spores (B. subtilis). We uncovered a novel Leg biosynthesis pathway, and we demonstrated that Leg is required for proper crust assembly. This work contributes to the description of the structure and composition of Bacillus spores which has been under way for decades, and it provides keys to understanding the importance of carbohydrates in Bacillus adhesion and persistence in the food industry.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Vias Biossintéticas , Ácidos Siálicos/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Parede Celular/fisiologia , Ácidos Siálicos/genética , Esporos Bacterianos/metabolismo
7.
Sci Rep ; 10(1): 8647, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457377

RESUMO

Siglec-7 is a human CD33-like siglec, and is localised predominantly on human natural killer (NK) cells and monocytes. Siglec-7 is considered to function as an immunoreceptor in a sialic acid-dependent manner. However, the underlying mechanisms linking sialic acid-binding and function remain unknown. Here, to gain new insights into the ligand-binding properties of Siglec-7, we carried out in silico analysis and site-directed mutagenesis, and found a new sialic acid-binding region (site 2 containing R67) in addition to the well-known primary ligand-binding region (site 1 containing R124). This was supported by equilibrium dialysis, STD-NMR experiments, and inhibition analysis of GD3-binding toward Siglec-7 using synthetic sialoglycoconjugates and a comprehensive set of ganglioside-based glycoconjugates. Our results suggest that the two ligand-binding sites are potentially controlled by each other due to the flexible conformation of the C-C' loop of Siglec-7.


Assuntos
Antígenos de Diferenciação Mielomonocítica/metabolismo , Sítios de Ligação/fisiologia , Lectinas/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Ácidos Siálicos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Gangliosídeos/metabolismo , Glicoconjugados/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Mutagênese Sítio-Dirigida , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
8.
Int J Mol Sci ; 21(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935967

RESUMO

The expression and biological functions of oncofetal markers GD2 and GD3 were extensively studied in neuroectoderm-derived cancers in order to characterize their potential as therapeutic targets. Using immunological approaches, we previously identified GD3, GD2, and OAcGD2 expression in breast cancer (BC) cell lines. However, antibodies specific for O-acetylated gangliosides are not exempt of limitations, as they only provide information on the expression of a limited set of O-acetylated ganglioside species. Consequently, the aim of the present study was to use structural approaches in order to apprehend ganglioside diversity in melanoma, neuroblastoma, and breast cancer cells, focusing on O-acetylated species that are usually lost under alkaline conditions and require specific analytical procedures. We used purification and extraction methods that preserve the O-acetyl modification for the analysis of native gangliosides by MALDI-TOF. We identified the expression of GM1, GM2, GM3, GD2, GD3, GT2, and GT3 in SK-Mel28 (melanoma), LAN-1 (neuroblastoma), Hs 578T, SUM 159PT, MDA-MB-231, MCF-7 (BC), and BC cell lines over-expressing GD3 synthase. Among O-acetylated gangliosides, we characterized the expression of OAcGM1, OAcGD3, OAcGD2, OAcGT2, and OAcGT3. Furthermore, the experimental procedure allowed us to clearly identify the position of the sialic acid residue that carries the O-acetyl group on b- and c-series gangliosides by MS/MS fragmentation. These results show that ganglioside O-acetylation occurs on both inner and terminal sialic acid residue in a cell type-dependent manner, suggesting different O-acetylation pathways for gangliosides. They also highlight the limitation of immuno-detection for the complete identification of O-acetylated ganglioside profiles in cancer cells.


Assuntos
Acetiltransferases/metabolismo , Gangliosídeos/metabolismo , Placa Neural/citologia , Acetilação , Acetiltransferases/genética , Neoplasias da Mama/metabolismo , Feminino , Gangliosídeos/química , Humanos , Células MCF-7 , Melanoma/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Placa Neural/metabolismo , Neuroblastoma/metabolismo
9.
Glycoconj J ; 36(1): 79-90, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30612272

RESUMO

Mainly restricted to the nervous system in healthy adults, complex gangliosides such as GD3 and GD2 have been shown to be involved in aggressiveness and metastasis of neuro-ectoderm derived tumors such as melanoma and neuroblastoma. Interestingly, O-acetylated forms of GD2, not expressed in human peripheral nerve fibers, are highly expressed in GD2+ tumor cells. Very little information is known regarding the expression of O-acetylated disialogangliosides in breast cancer (BC) cell lines. Here, we analyzed the expression of GD2, GD3 and their O-acetylated forms O-acetyl-GD2 (OAcGD2) and O-acetyl-GD3 (OAcGD3) in BC cells. We used Hs 578T and SUM159PT cell lines, as well as cell clones over-expressing GD3 synthase derived from MDA-MB-231 and MCF-7. Using flow cytometry and immunocytochemistry/confocal microscopy, we report that BC cells express b-series gangliosides GD3 and GD2, as well as significant amounts of OAcGD2. However, OAcGD3 expression was not detected in these cells. O-acetylation of gangliosides isolated from BC cells was examined by LC-MS analysis of sialic acid DMB-derivatives. We report that the main acetylated form of sialic acid expressed in BC gangliosides is 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2). These results highlight a close interrelationship between Neu5,9Ac2 and OAcGD2 expression, and suggest that OAcGD2 is synthetized from GD2 and not from OAcGD3 in BC cells.


Assuntos
Neoplasias da Mama/metabolismo , Gangliosídeos/química , Ácidos Siálicos/análise , Feminino , Gangliosídeos/metabolismo , Humanos , Células MCF-7 , Ácidos Siálicos/química
10.
Nat Commun ; 9(1): 4647, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405127

RESUMO

The emergence of zebrafish Danio rerio as a versatile model organism provides the unique opportunity to monitor the functions of glycosylation throughout vertebrate embryogenesis, providing insights into human diseases caused by glycosylation defects. Using a combination of chemical modifications, enzymatic digestion and mass spectrometry analyses, we establish here the precise glycomic profiles of eight individual zebrafish organs and demonstrate that the protein glycosylation and glycosphingolipid expression patterns exhibits exquisite specificity. Concomitant expression screening of a wide array of enzymes involved in the synthesis and transfer of sialic acids shows that the presence of organ-specific sialylation motifs correlates with the localized activity of the corresponding glycan biosynthesis pathways. These findings provide a basis for the rational design of zebrafish lines expressing desired glycosylation profiles.


Assuntos
Envelhecimento/metabolismo , Glicômica/métodos , Ácido N-Acetilneuramínico/metabolismo , Especificidade de Órgãos , Biologia de Sistemas/métodos , Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Glicoesfingolipídeos/isolamento & purificação , Glicosilação , Intestinos , Polissacarídeos/isolamento & purificação
11.
Proc Natl Acad Sci U S A ; 115(47): E11033-E11042, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397120

RESUMO

The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.


Assuntos
Insulina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Animais , Linhagem Celular Tumoral , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-30177911

RESUMO

O-linked ß-N-acetylglucosaminylation or O-GlcNAcylation is a widespread post-translational modification that belongs to the large and heterogeneous group of glycosylations. The functions managed by O-GlcNAcylation are diverse and include regulation of transcription, replication, protein's fate, trafficking, and signaling. More and more evidences tend to show that deregulations in the homeostasis of O-GlcNAcylation are involved in the etiology of metabolic diseases, cancers and neuropathologies. O-GlcNAc transferase or OGT is the enzyme that transfers the N-acetylglucosamine residue onto target proteins confined within the cytosolic and nuclear compartments. A form of OGT was predicted for Toxoplasma and recently we were the first to show evidence of O-GlcNAcylation in the apicomplexans Toxoplasma gondii and Plasmodium falciparum. Numerous studies have explored the O-GlcNAcome in a wide variety of biological models but very few focus on protists. In the present work, we used enrichment on sWGA-beads and immunopurification to identify putative O-GlcNAcylated proteins in Toxoplasma gondii. Many of the proteins found to be O-GlcNAcylated were originally described in higher eukaryotes and participate in cell shape organization, response to stress, protein synthesis and metabolism. In a more original way, our proteomic analyses, confirmed by sWGA-enrichment and click-chemistry, revealed that rhoptries, proteins necessary for invasion, are glycosylated. Together, these data show that regardless of proteins strictly specific to organisms, O-GlcNAcylated proteins are rather similar among living beings.

13.
Front Microbiol ; 9: 742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720971

RESUMO

A novel mechanism is revealed by which clinical isolates of adherent-invasive Escherichia coli (AIEC) penetrate into the epithelial cell layer, replicate, and establish biofilms in Crohn's disease. AIEC uses the FimH fimbrial adhesin to bind to oligomannose glycans on the surface of host cells. Oligomannose glycans exposed on early apoptotic cells are the preferred binding targets of AIEC, so apoptotic cells serve as potential entry points for bacteria into the epithelial cell layer. Thereafter, the bacteria propagate laterally in the epithelial intercellular spaces. We demonstrate oligomannosylation at two distinct sites of a glycoprotein receptor for AIEC, carcinoembryonic antigen related cell adhesion molecule 6 (CEACAM6 or CD66c), on human intestinal epithelia. After bacterial binding, FimH interacts with CEACAM6, which then clusters. The presence of the highest-affinity epitope for FimH, oligomannose-5, on CEACAM6 is demonstrated using LC-MS/MS. As mannose-dependent infections are abundant, this mechanism might also be used by other adherent-invasive pathogens.

14.
Environ Microbiol ; 20(1): 228-240, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29076618

RESUMO

The flagella of various Gram-negative bacteria are decorated with diverse glycan structures, amongst them nonulosonic acids related to the sialic acid family. Although nonulosonic sugar biosynthesis pathways have been dissected in various pathogens, the enzymes transferring the sugars onto flagellin are still poorly characterized. The deletion of genes coding for motility associated factors (Mafs) found in many pathogenic strains systematically gives rise to nonflagellated bacteria lacking specific nonulosonic sugars on the flagellins, therefore, relating Maf function to flagellin glycosylation and bacterial motility. We investigated the role of Maf from our model organism, Magnetospirillum magneticum AMB-1, in the glycosylation and formation of the flagellum. Deletion of the gene amb0685 coding for Maf produced a nonflagellated bacterium where the flagellin was still produced but no longer glycosylated. Our X-ray structure analysis revealed that the central domain of Maf exhibits similarity to sialyltransferases from Campylobacter jejuni. Glycan analysis suggested that the nonulosonic carbohydrate structure transferred is pseudaminic acid or a very close derivative. This work describes the importance of glycosylation in the formation of the bacterial flagellum and provides the first structural model for a member of a new bacterial glycosyltransferase family involved in nonulosonic acids transfer onto flagellins.


Assuntos
Flagelos/metabolismo , Flagelina/metabolismo , Glicosiltransferases/genética , Magnetospirillum/metabolismo , Proteínas de Bactérias , Campylobacter jejuni/enzimologia , Flagelos/genética , Glicosilação , Magnetospirillum/enzimologia , Magnetospirillum/genética , Ácidos Siálicos/química , Açúcares Ácidos/metabolismo
15.
Malar J ; 16(1): 485, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187233

RESUMO

BACKGROUND: Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. METHODS: The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). RESULTS: While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. CONCLUSIONS: This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.


Assuntos
Acetilglucosamina/metabolismo , Plasmodium falciparum/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma , Proteínas de Protozoários/metabolismo , Acetilglucosamina/química , Glicosilação , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
16.
Molecules ; 22(7)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671638

RESUMO

Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.


Assuntos
Adesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Manosídeos/farmacologia , Adesinas de Escherichia coli/química , Aderência Bacteriana , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Proteínas de Fímbrias/química , Manosídeos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
17.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28395125

RESUMO

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Assuntos
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/análogos & derivados , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Monofosfato de Citidina/química , Monofosfato de Citidina/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Expressão Gênica , Glicolipídeos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimologia , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferases/química , Sialiltransferases/genética , Especificidade por Substrato , beta-Galactosídeo alfa-2,3-Sialiltransferase
18.
Biomacromolecules ; 16(6): 1827-36, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25961760

RESUMO

n-Heptyl α-d-mannose (HM) is a nanomolar antagonist of FimH, a virulence factor of E. coli. Herein we report on the construction of multivalent HM-based glycopolymers as potent antiadhesives of type 1 piliated E. coli. We investigate glycopolymer/FimH and glycopolymer/bacteria interactions and show that HM-based glycopolymers efficiently inhibit bacterial adhesion and disrupt established cell-bacteria interactions in vitro at very low concentration (0.1 µM on a mannose unit basis). On a valency-corrected basis, HM-based glycopolymers are, respectively, 10(2) and 10(6) times more potent than HM and d-mannose for their capacity to disrupt the binding of adherent-invasive E. coli to T84 intestinal epithelial cells. Finally, we demonstrate that the antiadhesive capacities of HM-based glycopolymers are preserved ex vivo in the colonic loop of a transgenic mouse model of Crohn's disease. All together, these results underline the promising scope of HM-based macromolecular ligands for the antiadhesive treatment of E. coli induced inflammatory bowel diseases.


Assuntos
Proteínas de Fímbrias/antagonistas & inibidores , Mucosa Intestinal/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Adesinas de Escherichia coli , Animais , Adesão Celular/efeitos dos fármacos , Escherichia coli/patogenicidade , Células HeLa , Heptanol/química , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Manose/química , Camundongos , Polissacarídeos Bacterianos/química
19.
ACS Appl Mater Interfaces ; 6(8): 5422-31, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24433135

RESUMO

A variety of physical and chemical parameters are of importance for adhesion of bacteria to surfaces. In the colonization of mammalian organisms for example, bacterial fimbriae and their adhesins not only seek particular glycan sequences exposed on diverse epithelial linings, they also enable the bacteria to overcome electrostatic repulsion exerted by their selected surfaces. In this work, we present a new technique based on simplified model systems for studying the adhesion strength of different Escherichia coli strains. For this purpose, gold-based surface plasmon resonance (SPR) interfaces were coated with thin films of reduced graphene oxide (rGO) through electrophoretic deposition. The rGO matrix was post-modified with polyethyleneimine (PEI), poly(sodium 4-styrenesulfonate) (PSS), mannose, and lactose through π-stacking and/or electrostatic interactions by simple immersion of the SPR interface into their respective aqueous solutions. The adhesion behaviors of one uropathogenic and two enterotoxigenic Escherichia coli clinical isolates, that each express structurally characterized fimbrial adhesins, were investigated. It was found that the UTI89 cystitis isolate that carries the mannose-binding FimH adhesin was most attracted to the PEI- and mannose-modified surfaces, whereas the att25 diarrhoeal strain with the N-acetylglucosamine-specific F17a-G adhesin disintegrated the lactose-modified rGO. The highly virulent 107/86 strain interacted strongly with the PSS-modified graphene oxide, in agreement with the polybasic surroundings of the ABH blood group-binding site of the FedF adhesin, and showed a linear SPR response in a concentration range between 1 × 10(2) and 1 × 10(9) cfu/mL.


Assuntos
Escherichia coli/química , Escherichia coli/fisiologia , Grafite/química , Aderência Bacteriana , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
20.
ACS Med Chem Lett ; 4(11): 1085-90, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900609

RESUMO

Antagonists of the FimH adhesin, a protein almost universally present at the extremity of type-1 fimbriae expressed by Escherichia coli, have been abundantly in the spotlight as alternative treatments of urinary tract infections. The antagonists function as bacterial antiadhesives through highly specific α-d-mannose binding in a charged and polar pocket at the tip of the FimH lectin domain and by the stacking of alkyl or aromatic moieties substituted on the mannose with two tyrosine residues (Tyr48 and Tyr137) at the entrance of the mannose-binding pocket. Using high-resolution crystal data, interaction energies are calculated for the different observed aromatic stacking modes between the tyrosines and the antagonist. The dispersion component of the interaction energy correlates with the observed electron density. The quantum chemical reactivity descriptors local hardness and polarizability were successfully validated as prediction tools for ligand affinity in the tyrosine gate of FimH and therefore have potential for rapid drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...